Login



FAD - La Primavera Nefrologica


Modulo: Emodialisi

La risposta cardiovascolare alla emodialisi

release pubblicata il  21 ottobre 2014 
da Michele Buemi

Figura 1 di 132.



Figura 2 di 132.



Figura 3 di 132.



Figura 4 di 132.



Figura 5 di 132.



Figura 6 di 132.



Figura 7 di 132.



Figura 8 di 132.



Figura 9 di 132.



Figura 10 di 132.

Questo ci conduce direttamente all’arcinoto  grafico  della fine degli anni ’90 del registro americano. La mortalità  per fasce di età è espressa su scala logaritmica. La curva della popolazione dialitica è spostata molto in alto rispetto a quella della popolazione generale indicando che a parità di età  gli uremici muoiono molto più  dei loro coetanei con funzione renale normale. Ma la differenza è davvero scioccante,  in media la mortalità dei dializzati è circa  100 volte più elevata. Fatte queste premesse generali, vorrei proporvi un  esercizio  di stima del  rischio globale  a partire da   ciascun fattore di rischio per cercare di capire come si possa arrivare a un rischio così tanto più alto nei dializzati.



Figura 11 di 132.



Figura 12 di 132.

Left ventricular (LV) pressure overload, LV volume overload, and myocyte death in chronic uremia.



Figura 13 di 132.



Figura 14 di 132.

Miociti forme bizzarre

Ecco cosa hanno trovato. Ecco un uomo di 63 anni in dialisi da 7 anni e questi sono molto irregolare, grumosa, miociti forme bizzarre con nuclei eccentrici e con un modello molto, molto insolita e bizzarra.Questo è un paziente in dialisi.



Figura 15 di 132.

Cumulative percent survival in patients with systolic dysfunction, concentric LV hypertrophy, LV dilation, and normal echocardiogram on starting dialysis therapy (11). Reprinted with permission from Nephrol Dial Transplant 11: 1277-1285, 1996.



Figura 16 di 132.



Figura 17 di 132.



Figura 18 di 132.



Figura 19 di 132.



Figura 20 di 132.

Biocompatibility and permeability may impact on death and cardiovascular events in hemodialysis patients with type 2 diabetes mellitus.

Background:Effects of dialyzer membrane characteristics on morbidity and mortality are highly controversial.

Methods:Post hoc, we analyzed data from the German Diabetes and Dialysis Study that evaluated atorvastatin in high-risk patients. Four groups were identified being constantly dialyzed with high-flux synthetic (n241), low-flux synthetic (n247), low-flux semisynthetic (n119), or cellulosic low-flux

membranes (n41). Two end points were investigated: (1) a cardiovascular end point consisting of cardiac death, nonfatal myocardial infarction, and stroke and (2) death.

Results: After 4 years of follow-up, adjustedmultivariate relative risks (RRs) were calculated. The RR to reach a cardiovascular end point was greater for patients dialyzed with cellulosic low-flux (RR, 2.33; 95%confidence interval [CI], 1.38 to 3.94;P0.002), low-flux semisynthetic (RR, 1.92; 95% CI, 1.35 to

2.73;P0.0003), or low-flux synthetic membranes (RR, 1.35; 95% CI, 0.99 to 1.85;P0.06) than for those treated with high-flux synthetic dialyzers. The likelihood to die was greater with cellulosic low-flux (RR, 4.14; 95% CI, 2.79 to 6.15;P0.0001), low-flux semisynthetic (RR, 2.24; 95% CI, 1.66 to 3.02;

P0.0001), and low-flux synthetic membranes (RR, 1.59; 95% CI, 1.22 to 2.07;P0.0006) than with high-flux synthetic membranes. With respect to low-flux synthetic membranes, RRs of mortality for patients using cellulosic low-flux and low-flux semisyntheticmembranes were 161% (RR, 2.61; 95 % CI,

1.80 to 3.79;P0.0001) and 41% (RR, 1.41; 95% CI, 1.07 to 1.86;P0.016) greater. Cellulosic low-flux membrane use was associated with an 85% (RR, 1.85; 95% CI, 1.24 to 2.76; P0.0025) greater RR of death than low-flux semisynthetic membranes.

Conclusion:These data suggest that biocompatibility and permeability may impact on death and cardiovascular events in hemodialysis patients with type 2 diabetes mellitus.

Figure 1. Cumulative incidence estimates for time to the combined cardiovascular end point. High-flux (HF) synthetic (n  241) versus low-flux (LF) synthetic (n  247) versus LF semisynthetic (n  119) versus LF cellulosic membranes (n  41).



Figura 21 di 132.

Figure 2. Cumulative incidence estimates for time to death from all causes. Highflux (HF) synthetic (n  241) versus low-flux (LF) synthetic (n  247) versus LF semisynthetic (n  119) versus LF cellulosic membranes (n  41).



Figura 22 di 132.

Figure 3. Effects of dialysis membrane class on (A) total mortality and (B) combined cardiovascular end point. Values represent hazard ratios/RRs and 95% CIs associated with a class of dialysis membrane compared with another class of dialysis membrane. The following explanatory variables were considered for inclusion in the Cox regression model: sex, age, atorvastatin treatment, and the baseline laboratory parameters phosphate, calcium, low-density lipoprotein, high-density lipoprotein, triglycerides, hemoglobin, HbA1c, albumin, statin pretreatment, smoking status, systolic and diastolic blood pressure, BMI, time on maintenance hemodialysis therapy, antiplatelet drug therapy, history of cardiovascular disease and peripheral vascular disease, history of stroke or transitory ischemic attack, and body weight change by dialysis.



Figura 23 di 132.

Background

Acute renal failure (ARF) is associated with substantial morbidity and mortality. Some studies have reported a survival advantage among patients dialyzed with biocompatible membranes (BCM) compared to bioincompatible membranes (BICM). These findings were not consistently observed in subsequent studies.

Objectives

To ascertain whether the use of BCM confers an advantage in either survival or recovery of renal function over the use of BICM in adult patients with ARF requiring intermittent hemodialysis.

Search methods

We searched the Cochrane Central Register of Controlled Trials (CENTRAL, in The Cochrane Library), MEDLINE (from 1966), EMBASE (from1980), theMexican Index of Latin American Biomedical Journals IMBIOMED (from1990), the Latin American and Caribbean Health Sciences Literature Database LILACS (from 1982), and reference lists of articles. Search date: January 2007

Selection criteria

Randomized and quasi-randomized controlled trials comparing the use of a BCM with a BICM in patients > 18 years of age with ARF requiring intermittent hemodialysis.

Data collection and analysis

Two authors extracted the data independently. Cellulose-derived dialysis membranes were classified as BICM, and synthetic dialyzers were considered as BCM. The main outcomes were all-cause mortality and recovery of renal function by type of dialyzer. We further explored these outcomes according to the flux properties (high-flux or low-flux) of each of these dialyzers. A meta-analysis was conducted by combining data using a random-effects model.

Main results

Ten studies were included in the primary analysis of mortality, with a total of 1100 patients. None of the pooled risk ratios (RRs) reached statistical significance. The pooled RR for mortality was 0.93 (95% confidence interval (CI) 0.81 to 1.07). The overall RR for recovery of renal function, which was inclusive of 1038 patients from nine studies, was 1.09 (95% CI 0.90 to 1.31). The pooled RR for mortality by dialyzer flux property was 1.05 (95% CI 0.81 to 1.37). The pooled RR for recovery of renal function by flux property was 1.30 (95% CI 0.83 to 2.02). A meta-analysis of mortality among kidney transplant recipients was not possible, however the analysis of recovery of renal function in this patient population revealed an RR of 1.05 (95% CI 0.87 to 1.26). Results of sensitivity analyses

did not differ significantly from the primary analyses.

Authors’ conclusions

There is no demonstrable clinical advantage to the use of BCM versus BICM in patients with ARF who require intermittent hemodialysis.



Figura 24 di 132.



Figura 25 di 132.



Figura 26 di 132.



Figura 27 di 132.



Figura 28 di 132.



Figura 29 di 132.



Figura 30 di 132.



Figura 31 di 132.



Figura 32 di 132.



Figura 33 di 132.



Figura 34 di 132.



Figura 35 di 132.



Figura 36 di 132.



Figura 37 di 132.



Figura 38 di 132.



Figura 39 di 132.



Figura 40 di 132.



Figura 41 di 132.



Figura 42 di 132.



Figura 43 di 132.



Figura 44 di 132.



Figura 45 di 132.



Figura 46 di 132.



Figura 47 di 132.



Figura 48 di 132.



Figura 49 di 132.



Figura 50 di 132.



Figura 51 di 132.



Figura 52 di 132.



Figura 53 di 132.



Figura 54 di 132.



Figura 55 di 132.



Figura 56 di 132.



Figura 57 di 132.



Figura 58 di 132.



Figura 59 di 132.



Figura 60 di 132.



Figura 61 di 132.



Figura 62 di 132.



Figura 63 di 132.



Figura 64 di 132.



Figura 65 di 132.



Figura 66 di 132.



Figura 67 di 132.



Figura 68 di 132.

26 pazienti cronici di cui 13 con arteriopatia periferica  - 65 anni , anzianità 8.1 anni , diabete 19,2%



Figura 69 di 132.



Figura 70 di 132.



Figura 71 di 132.

Nonuremic biopsia cardiaca

Ecco un paziente in contrasto con chi ha paffuto, miociti sani-guardare, e aveva avuto nessun evento cardiaco 4 anni dopo la biopsia, e c'è molto poco fibrosi intermyocytic.



Figura 72 di 132.



Figura 73 di 132.



Figura 74 di 132.



Figura 75 di 132.



Figura 76 di 132.



Figura 77 di 132.



Figura 78 di 132.



Figura 79 di 132.



Figura 80 di 132.

Figure 1. Representative changes in apical myocardial mechanics in a patient before and after conversion to nocturnal hemodialysis.

A, Segmental and average (gray curve) apical strain. Note the increases in peak apical strain (both in magnitude and uniformity) after conversion

to nocturnal hemodialysis, implying improved systolic function. B, Segmental and average (gray curve) apical rotation angles. Note

modest increase in peak rotation angle (improved systolic function), larger and faster early reverse rotation, implying improvement in diastolic

relaxation. Graphs are autoscaled by velocity vector imaging; scale changes reflect changes in magnitude. Numbers in balloons are

peak average values. NHD indicates nocturnal hemodialysis. Figure 2. Real-time quantitative polymerase chain reaction confirmation

of cardiomyocyte gene signature before and after conversion

from conventional to nocturnal hemodialysis. Black bar

indicates conventional hemodialysis. White bar indicates nocturnal

hemodialysis. **P<0.05 between conventional hemodialysis

and nocturnal hemodialysis. Cdkn1a indicates cyclin-dependent

kinase inhibitor 1A; Cdkn1c, cyclin-dependent kinase inhibitor

1C; Bax, Bcl2-associated X protein; S100a1, S 100 calcium binding

protein A1.



Figura 81 di 132.



Figura 82 di 132.



Figura 83 di 132.



Figura 84 di 132.



Figura 85 di 132.



Figura 86 di 132.



Figura 87 di 132.

Figure 3. | Boxplots displaying troponin T levels at baseline (dark) and at year 1 (light). All 33 patients with stunning at baseline and being

followed up after 1 year also had stunning at year 1. Five patients without stunning at baseline were not followed up for 1 year and are counted as

“never stunning.” Pvalues are derived from Wilcoxon test for paired samples and include only patients sampled at both time points. The top of

the box represents the 75th percentile, the bottom of the box represents the 25th percentile, and the line in the middle represents the 50th

percentile (median). The whiskers represent the highest and lowest values (excluding outliers



Figura 88 di 132.



Figura 89 di 132.

Figure 1: Kaplan-Meier survival curves by baseline troponin cut-offs, (A) cTnT using the 99thpercentile 0.01 ng/mL, 10% CV 0.03 ng/mL and the ROC 0.1 ng/mL. (B) cTnI using the 99thpercentile 0.2 ng/mL.



Figura 90 di 132.



Figura 91 di 132.



Figura 92 di 132.



Figura 93 di 132.



Figura 94 di 132.



Figura 95 di 132.



Figura 96 di 132.



Figura 97 di 132.



Figura 98 di 132.



Figura 99 di 132.



Figura 100 di 132.



Figura 101 di 132.



Figura 102 di 132.



Figura 103 di 132.



Figura 104 di 132.



Figura 105 di 132.



Figura 106 di 132.



Figura 107 di 132.



Figura 108 di 132.



Figura 109 di 132.



Figura 110 di 132.



Figura 111 di 132.



Figura 112 di 132.



Figura 113 di 132.



Figura 114 di 132.



Figura 115 di 132.



Figura 116 di 132.



Figura 117 di 132.



Figura 118 di 132.



Figura 119 di 132.



Figura 120 di 132.



Figura 121 di 132.



Figura 122 di 132.



Figura 123 di 132.



Figura 124 di 132.



Figura 125 di 132.



Figura 126 di 132.



Figura 127 di 132.

Dramatic removal of potassium during hemodialysis sessions can induce changes in the electrical properties of nerve cells or muscle fibers, which may underlie neuromuscular symptoms referred by end-stage renal disease patients. The primary aim of our study was to investigate the effects of acetate-free biofiltration (AFB) on the amplitude of compound motor action potential (cMAP) obtained after stimulation of the ulnar nerve at the wrist. The secondary aim was to compare the effect of two different potassium removal modalities on cMAP amplitude and to analyze the effects on muscular force by specific dynamometric tests. Twenty-eight patients received dialysis for 4 h, 3 times per week, first with standard AFB with constant potassium (AFB) and then with AFB with a variable concentration of potassium in the dialysis bath (AFB(K)). The amplitude of cMAP was determined after ulnar nerve stimulation at the wrist at different time intervals: at the start of dialysis; at 15, 45, 90, and 120 min after beginning the session; and at the end of treatment. At the same time intervals, muscle force generation was determined using a dynamometer. Finally, we measured plasma electrolytes, intraerythrocytic potassium, and the electrical membrane potential at rest (REMP) of the erythrocytic membrane. The main finding of this study was a significant reduction of cMAP amplitude in the first 45 min after AFB, which paralleled the reduction in serum potassium levels. Moreover, there was a reduction of muscular strength determined with dynamometric measurements. Potassium removal induced by the two different modalities of AFB may significantly affect myocardial and fibromuscular cells by modulating the electrochemical balance of cell membranes. The transient alteration of the electrical properties on voluntary striated muscle fibers may contribute to the brief reduction in muscular strength we detected in patients who underwent AFB. AFB(K) can minimize the negative effects of standard AFB treatment on neuromuscular excitability, most likely through a more gentle variation of potassium levels during dialysis.



Figura 128 di 132.



Figura 129 di 132.



Figura 130 di 132.

Guarda il video su YouTube



Figura 131 di 132.



Figura 132 di 132.



Parole chiave: emodialisi

Per partecipare al Corso di Formazione a Distanza è necessario:

  • Effettuare, al primo accesso, la registrazione cliccando sul pulsante "Registrati"
  • Compilare l’apposito modulo di registrazione

Se sei già registrato fai la login con utente e password.



Realizzazione: TESISQUARE®
Per assistenza tecnica sul sito: fad@wooky.it
Per assistenza ECM: Infomedica, info@infomedica.com
Tel. 011.859990 (dal lunedì al venerdì, ore 9.30-12.30 / 14.30-17.30)